Failure Analysis of Electrically Conductive Adhesive Interconnects by X-Ray Tomography

Barry Hartweg, Kate Fisher, Justin Huxel, Sridhar Niverty, Nik Chawla, and Zak Holman
Arizona State University
Electrically conductive adhesives (ECAs) solar applications

- ECAs present an exciting opportunity for the solar industry
- Commercial modules are relatively new and their failure mechanisms are widely not understood
ECAs are adhesive materials such as epoxy or silicone filled with conductive metal particles like silver and/or copper.

<table>
<thead>
<tr>
<th>Paste</th>
<th>Filler</th>
<th>Metal %</th>
<th>$\rho$ (m$\Omega$cm</th>
<th>$G @ 25^\circ$C (MPa)</th>
<th>$T_a$(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPOXY 1</td>
<td>Ag flakes</td>
<td>25-50</td>
<td>100</td>
<td></td>
<td>50-60</td>
</tr>
<tr>
<td>EPOXY 2</td>
<td>Ag &amp; Cu flakes</td>
<td>60-100</td>
<td>0.4</td>
<td>1720</td>
<td>Onset: 55-90 Tandelta: 16</td>
</tr>
<tr>
<td>EPOXY 3</td>
<td>Ag &amp; Cu flakes</td>
<td>70-100</td>
<td>0.5</td>
<td>160</td>
<td>Tandelta: -10</td>
</tr>
<tr>
<td>EPOXY 4</td>
<td>Ag &amp; Cu flakes</td>
<td>70-90</td>
<td>0.32</td>
<td>212</td>
<td>Onset: -10 Tandelta: 16</td>
</tr>
<tr>
<td>EPOXY 5</td>
<td>Ag &amp; Cu flakes</td>
<td>~ 80</td>
<td>0.3</td>
<td>80</td>
<td>Onset: -30 Tandelta: -15</td>
</tr>
<tr>
<td>EPOXY 6</td>
<td>Ag &amp; Cu flakes</td>
<td>~ 80</td>
<td>0.2</td>
<td>170</td>
<td>Onset: -20 Tandelta: 0</td>
</tr>
<tr>
<td>SILICONE</td>
<td>Ag &amp; Cu particles</td>
<td>83-88</td>
<td>0.18</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
Project motivation

ECA interconnections throughout damp heat\(^1\)

- Minimal literature about the mode of ECA failure

Solder damage modelled in different climates\(^1\)

- Collaborating with Nick Bosco at NREL to produce a similar model but for ECA interconnections

---


Mini-module fabrication and failure monitoring

Accelerated ageing testing:
- Thermocycling (TC) (-40°C to 85°C)
- Damp heat (testing pending)

Failure monitoring:
- I-V and Suns $V_{oc}$
- Electroluminescence
- Series resistance mapping

Failed sample analysis:
- X-ray transmission
- X-ray tomography
- Cross-sectional SEM
- Elemental mapping by EDXS

Stencil print ECA onto Cell 1 busbar

Introduction to x-ray tomography

- Based on x-ray transmission imaging
- Program processes transmission images into a 3D rendering of sample
- Up to ~1μm/pixel resolution
- Differentiates materials by densities

Example of a 3D rendering from x-ray tomography

Cone Beam Computed Tomography System Diagram

Series resistance mapping throughout thermocycling

<table>
<thead>
<tr>
<th></th>
<th>0 TC</th>
<th>50 TC</th>
<th>100 TC</th>
<th>300 TC</th>
<th>500 TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs (Ω cm²)</td>
<td>0.55</td>
<td>0.61</td>
<td>0.63</td>
<td>0.66</td>
<td>0.71</td>
</tr>
</tbody>
</table>
X-ray transmission imaging after 500 TC

X-Ray transmission image of busbar

Ag fingers

ECA
Comparing X-ray transmission with SEM cross section
X-ray transmission images from different samples with same processing
Processing analysis by transmission imaging

Lamination Curing

- Blade coating produces wide variability in the distribution of metal particles in ECA layer
- Lamination alone has no notable affect on ECA metal distribution

Hot Plate Cure, pre-lamination

Hot Plate Cure, post-lamination
ECA dispensing tool

Before lamination:

After lamination:
Tomography scan

Transmission image of scan area

Top to Bottom Cell (z axis)

Through Busbar (y axis)
Tomography still images

Transmission

Side Profile

Cross Section

Top-Down

300 µm

300 µm
Tomography scan

Transmission

Top to bottom cell (z axis)

Through busbar (y axis)
Features shown through x-ray tomography

- Voids (~10-130μm)
- Cracks
- Delamination from busbar
- Larger metal particles
- Viable conduction pathways
- Voids in screen printed busbars

Interface of ECA and busbar

[Images showing features like cracks, delamination, larger metal particles, and voids in busbar]
## Future plan

<table>
<thead>
<tr>
<th>Step</th>
<th>Initial characterization</th>
<th>Re-characterize through TC/DH</th>
<th>Cut sample for tomography and cross-sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricate mini-module</td>
<td>0 TC</td>
<td>100, 200…TC</td>
<td></td>
</tr>
<tr>
<td>New module design using the ECA dispensing tool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial characterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-characterize through TC/DH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut sample for tomography and cross-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*We can begin here for failed industrial samples*
**X-ray transmission and tomography summary**

**X-Ray Transmission**

- Non-destructive
  - Can be added to characterization throughout TC/DH

- 2D imaging of metal distribution throughout ECA
  - Misalignment
  - Voids
  - Relative information about thickness

- Informs where to run tomography scan

**X-Ray Tomography**

- 3D imaging of metal distribution in ECA
  - 3D understanding of conduction pathways
  - 3D voids
  - Cracks
  - Delamination
  - Larger metal particles
  - Up to 1μm/pixel resolution

- Informs where to make cross section for SEM and EDXS
Thank you for your attention!

Contact information:
Barry Hartweg
bhartweg@asu.edu

Acknowledgements