Lead-free Solders for Ribbon Interconnection of Crystalline Silicon PERC Solar Cells with Infrared Soldering

Torsten Geipel, Dirk Eberlein, Achim Kraft

Fraunhofer Institute for Solar Energy Systems ISE

8th Metallization Workshop
Konstanz, 14.05.2019

www.ise.fraunhofer.de
CONTENT

- Purpose and aims
- Experimental approach
- Characterization of melting and solidification with differential scanning calorimetry
- Microstructure analysis
- Peel tests and reliability tests
- Summary and conclusion
Motivation and Aims

Motivation
- Removal of toxic lead from PV module
- Reduction of thermomechanical stress by low melting point solders
- Interconnection of temperature-sensitive cells

Aims
- Measurement of melting and solidification temperatures
- Microstructural analysis of solder bonds
- Analysis of peel strength and fracture pattern
- Obtaining indications for reliability

Challenge
- Brittleness of bismuth
Experimental Approach

Differential scanning calorimetry (DSC)

Connection of 5-busbar industrial mono PERC solar cells

Connected cells

One-cell modules
Cross section analysis
Peel test / fracture analysis

Reliability tests

Sn43Bi57 Sn60Bi40 Sn60Bi38Ag2 Ecosol Sn60Pb40

Metallography

Infrared stringer
Peel test

Sn43Bi57 Sn60Bi40 Sn60Bi38Ag2 Ecosol Sn60Pb40

0.22 mm
0.9 mm

F_peel

Joint 200 µm Cell Ribbon
DSC and Infrared Stringing

- Analysis of endothermic and exothermic reactions with DSC
 - 80 mg coated ribbon in sealed Al crucible
 - Heating and cooling from 35 °C to 250 °C at 10 K/min
- DSC-analysis according to [1]
 - Eutectic and liquidus temperature during heating and cooling
 - Undercooling [2]
- Infrared stringer TT1800 with 2.2 s/cycle
- One-cell modules with EVA, TPT-backsheet and non AR-coated glass

<table>
<thead>
<tr>
<th>Coating</th>
<th>Peak soldering temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn43Bi57</td>
<td>160</td>
</tr>
<tr>
<td>Sn60Bi40</td>
<td>180</td>
</tr>
<tr>
<td>Sn60Bi38Ag2</td>
<td>180</td>
</tr>
<tr>
<td>Ecosol</td>
<td>200</td>
</tr>
<tr>
<td>Sn60Pb40</td>
<td>220</td>
</tr>
</tbody>
</table>

DSC – Melting and Solidification

Sn43Bi57

- Melting of Sn43Bi57 at single temperature 137 °C
- Solidification at 134 °C
- Undercooling: 3 K
- Assumption: Undercooling is an advantageous effect to reduce thermo-mechanical stress
DSC – Melting and Solidification
Sn60Bi40 and Sn60Bi38Ag2

- Melting of Sn60Bi40 in a range from 138 °C to 165 °C
- Solid-liquid-phase and liquid phase
- Beginning of solidification at 152 °C, end at 130 °C
- Undercooling: ~8–13 K
- No difference for Sn60Bi38Ag2
DSC – Melting and Solidification

Ecosol

- Melting of Ecosol in a range from 137 °C to 171 °C
- Beginning of solidification at 157 °C and end at 131 °C
- Undercooling: ~6−14 K
- Higher process temperatures will be necessary
Cross Section Analysis

Sn60Pb40

- Low (< 30°) and high wetting angles (90°)
- Good solder bond is established anyways
- Solder thickness front often lower than on the rear
- Downholders in the stringer
Cross Section Analysis

Sn60Pb40

- Usually fine grain structure
- Sn-rich grains inside large Pb-rich grains (“sponge”)
- High ductility expected

Sn60Pb40 details
Cross Section Analysis

Sn43Bi57

- Sn43Bi57 tends to have larger grain sizes of Bi (often > 30 μm²)
- Problem: brittleness and growth during aging
- Good wetting
- Again, usually front solder layer is thinner than rear
Cross Section Analysis

Sn60Bi40

- Good wetting and usually smaller grain sizes
- Lower risk of large and brittle Bi-rich grains
Cross Section Analysis

Sn60Bi38Ag2

- Mixture of large and small Bi-rich grains
- Ag forms separate phases (Ag₃Sn) → usually intermetallic phases are considered as problematic
Cross Section Analysis

Ecosol

- Good wetting with usually < 90° wetting angle
- Mixture of large and small Bi-rich grains, seems to be lower Bi-content
- Coarse boundaries within solder or caused by sample preparation
Peel and Fracture Analysis

- Peel strength is on average more than 1 N/mm except from Sn43Bi57 rear side.
- Pads with low adhesion for lead-free types.
- Sn60Pb40 highest peel strength due to better ductility.
- Weakest link at the Si-busbar-interface, not inside the solder.
- Ductile fracture for Sn60Pb40.
- Brittle fracture for lead-free solders.
- Fracture of Ecosol sometimes at the solder-ribbon interface.
Results

Reliability

- Similar degradation of all solders after reliability tests
- Finger interruptions observed due to ribbon misalignment regardless of solder coating
- Intermediate conclusion: All solders seem to be capable of passing IEC certification
Summary

- Melting and solidification characterized with DSC
- Tailoring of liquidus by adapting solder composition
- Sn43Bi57 has large areas with brittle Bi-rich phases (> 30 μm²)
- Hypoeutectic Sn-Bi-compositions contain mix of large and small grains
- No obvious advantage of Ag-addition in Sn-Bi (Ag₃Sn, additional costs)
- Adequate peel strength of around 1 N/mm for all solders
- Signs of brittle fracture for Sn-Bi-X / Ecosol
- All tested solders pass rudimentary reliability tests

Preliminary conclusion and recommendation

- Lead-free Bi-based solders are suitable for the interconnection
- Hypoeutectic Sn-Bi-composition (less Bi) with moderate process temperature
Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Torsten Geipel

www.ise.fraunhofer.de
torsten.geipel@ise.fraunhofer.de