

ACCURATE MEASUREMENT OF BUSBARLESS SILICON SOLAR CELLS

Michael Rauer, Katinka Kordelos,
Alexander Krieg, Jochen Hohl-Ebinger

Fraunhofer Institute for Solar Energy Systems ISE

8th Metallization Workshop
Constance, May 14, 2019

Measurement of Busbarless Silicon Solar Cells

Motivation

- Busbarless solar cells become more and more important
- Measurement of current-voltage ($I-U$) characteristics of busbarless cells
 - Contacting of grid fingers only
 - Different setups for measurement developed [2-6]
- **Challenging:** Realization of 4-wire connection

"Voltages and currents shall be measured [...] using independent leads from the terminals" [7]

→ Separate, electrically isolated current and voltage contacts on fingers necessary

[1] ITRPV, Ninth Edition (2018).

[3] N. Bassi, Proc. 29th EUPVSEC, 1180 (2014).

[5] S. Raj, IEEE 7th WCPEC, 3294 (2018).

[7] IEC standard 60904-1.

[2] G. Hahn, Patent, WO2014037382A1 (2013).

[4] S. Dauwe, 6th Workshop on Metallization (2016).

[6] M. Osborne, Press release, PV-Tech, May 30th (2018).

Measurement of Busbarless Silicon Solar Cells

Motivation

- At CalLab PV Cells measurement unit constructed based on Pasan's Grid^{TOUCH} unit [1]
- Conducting wires spanned over front side perpendicularly to grid finger orientation
 - (1) Front contact to solar cell
 - (2) Pressing of solar cell onto rear contact (additional vacuum suction)
- Realization of active solar cell cooling

[1] N. Bassi, Proc. 29th EUPVSEC, 1180 (2014).

Measurement of Busbarless Silicon Solar Cells

Motivation

- Separate, electrically isolated current (I) and voltage (U) wires
 - **Ideal 4-wire sensing:**
Distance $d_{I\text{to}U} = 0$ between I and U wires
 - **Sensing in reality:**
Distance $d_{I\text{to}U} \neq 0$ between I and U wires
due to constructional restrictions

→ **Aim of this work:** Evaluation of “non-ideal”
distance between I and U wires

Experimental Investigation of Non-Ideal Sensing Current-Voltage Measurement of Busbarless Solar Cells

- $I-U$ measurement of busbarless solar cells with different front grid resistivity R_{grid}

Front grid paste	R_{grid} [m Ω /cm]
High-temperature, conventional	6
Low-temperature, conventional	20-40
Low-temperature, advanced	>200

- Finger resistivity several orders of magnitudes higher than busbar resistivity

Experimental Investigation of Non-Ideal Sensing Current-Voltage Measurement of Busbarless Solar Cells

- $I-U$ measurement of busbarless solar cells with different front grid resistivity R_{grid}

Front grid paste	R_{grid} [m Ω /cm]
High-temperature, conventional	6
Low-temperature, conventional	20-40
Low-temperature, advanced	>200

- Finger resistivity several orders of magnitudes higher than busbar resistivity

Experimental Investigation of Non-Ideal Sensing Current-Voltage Measurement of Busbarless Solar Cells

- $I-U$ measurement of busbarless solar cells with different front grid resistivity R_{grid}
- Disconnection of I wires next to U wires
- Increase in distance d_{I-U} between I and U wires

Experimental Investigation of Non-Ideal Sensing Current-Voltage Measurement of Busbarless Solar Cells

Possible expectation:

- Reducing number of current contacts leads to decrease in FF and η

Measurement:

- Strong increase in measured FF and η to artificially high values
- Increase the larger, the higher R_{grid}
- No effect on I_{sc} and V_{oc}
- Position of I and U wires with very strong impact

→ Overestimation of FF and η by non-ideal sensing

Why does FF and η depend so severely on distance between I and U wires?

Theoretical Investigation of Non-Ideal Sensing

Analytical Calculations

- Analytical calculations of $I-U$ curves^[1,2]
 - Based on two-diode model approach for PERC-like solar cell
 - Series resistance of finger grid not yet considered in two-diode model
 - Current flow perpendicular to fingers only assumed
- Increasing current between current wires
 - Voltage distribution in finger due to finite finger conductivity
 - Iterative calculation of voltage and current distribution

[1] J. Hohl-Ebinger, Proc. 23rd EUPVSEC, 2012 (2008).
[2] C. Kruse, IEEE JPV 7.3, 747 (2017).

Theoretical Investigation of Non-Ideal Sensing

Calculation of Ideal Sensing

Ideal 4-wire sensing:

- Voltage and current contact at same position
- Contact arrangement similar to module interconnection
- Reference configuration

[1] J. Hohl-Ebinger, Proc. 23rd EUPVSEC, 2012 (2008).
[2] C. Kruse, IEEE JPV 7.3, 747 (2017).

Theoretical Investigation of Non-Ideal Sensing

Calculation of Ideal Sensing

Ideal 4-wire sensing:

- Voltage at voltage contact externally defined by voltage source
- Voltage distribution in finger exemplarily for one voltage close to mpp
- Measured voltage at contact similar, but higher voltage between contacts

Theoretical Investigation of Non-Ideal Sensing

Calculation of Ideal Sensing

Ideal 4-wire sensing:

- Current distribution in finger
- Lower current density between current contacts
- Measured current density is average over distribution
- Measured current density reduced

Theoretical Investigation of Non-Ideal Sensing

Calculation of Ideal Sensing

Ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve

Theoretical Investigation of Non-Ideal Sensing

Calculation of Ideal Sensing

Ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve
- Grid resistance leads to “*distributed series resistance*”^[1,2]

FF [%] advanced paste	
Grid neglected	80.48
Ideal sensing	80.05

[1] B. Fischer, Proc. 16th EUPVSEC, 1365 (2000).
[2] J. Greulich, Proc. 24th EUPVSEC, 2065 (2009).

Theoretical Investigation of Non-Ideal Sensing

Calculation of Ideal Sensing

Ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve
- Grid resistance leads to “*distributed series resistance*”^[1,2]

	FF [%] advanced paste	FF [%] conventional paste
Grid neglected	80.48	80.48
Ideal sensing	80.05	80.41

- For ideal sensing reduction of FF compared to grid-free case

[1] B. Fischer, Proc. 16th EUPVSEC, 1365 (2000).
[2] J. Greulich, Proc. 24th EUPVSEC, 2065 (2009).

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Voltage and current contact at different positions

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Voltage and current contact at different positions
- Voltage distribution different from ideal 4-wire sensing
- Voltage in finger locally reduced compared to ideal sensing

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Current density distribution different from ideal 4-wire sensing
- Current density in finger locally increased

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Current density distribution different from ideal 4-wire sensing
 - Current density in finger locally increased
- Measured current density is average over distribution
 - Measured current density overrated compared to ideal 4-wire sensing

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve

FF [%] advanced paste	
Ideal sensing	80.05
Non-ideal sensing	80.69
FF overestimation	0.64

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve

	FF [%] advanced paste	FF [%] conventional paste
Ideal sensing	80.05	80.41
Non-ideal sensing	80.69	80.52
FF overestimation	0.64	0.11

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve

	η [%] advanced paste	η [%] conventional paste
Ideal sensing	21.62	21.72
Non-ideal sensing	21.79	21.75
η overestimation	0.17	0.03

Theoretical Investigation of Non-Ideal Sensing

Calculation of Non-Ideal Sensing

Non-ideal 4-wire sensing:

- Calculation done for entire voltage range of forward I - U curve

→ For conventional metallization:

Non-ideal sensing uncritical

For advanced metallization:

Significant overestimation of FF and η

- Overestimation increases Cell-to-Module (CTM) loss
- Included in uncertainty budget as systematic uncertainty of FF, η and P_{mpp}

How can the measurement unit be improved?

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- Calculation of ΔFF for variation of voltage sense position

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- Calculation of ΔFF for variation of voltage sense position

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- ΔFF decreases with square of distance from middle position

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- ΔFF decreases with square of distance from middle position

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- ΔFF decreases with square of distance from middle position

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- ΔFF decreases with square of distance from middle position
- ΔFF increases for increase of front grid resistivity

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(1) Approaching voltage to current wire

- ΔFF decreases with square of distance from middle position
- ΔFF increases for increase of front grid resistivity

Improvement of measurement unit

- Strong reduction of distance between I and U wires necessary
- $\Delta FF > 0.2\%_{\text{rel}}$ for minimal distance (= wire diameter)

→ Approach not effective

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(2) Approaching of current wires

- Calculation of difference ΔFF between ideal and non-ideal voltage sensing

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(2) Approaching of current wires

- Calculation of difference ΔFF between ideal and non-ideal voltage sensing

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(2) Approaching of current wires

- ΔFF decreases strongly with distance between current wires

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(2) Approaching of current wires

- ΔFF decreases strongly with distance between current wires

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(2) Approaching of current wires

- ΔFF decreases strongly with distance between current wires
- ΔFF increases for increase of front grid resistivity

Theoretical Investigation of Non-Ideal Sensing Approaches for Improving Contacting Unit

(2) Approaching of current wires

- ΔFF decreases strongly with distance between current wires
- ΔFF increases for increase of front grid resistivity

Improvement of measurement unit

- Already small reduction of distance with significant effect
- $\Delta FF < 0.1\%_{\text{rel}}$ for moderate distance of 2 mm

→ Approach promising, but implies asymmetric arrangement of / wires

Summary

- Accurate measurement of busbarless solar cells in 4-wire connection challenging
 - Resistivity of fingers much higher than resistivity of busbars
- Investigation of influence of distance between U and I wires by experiments and calculations
 - Voltage distribution in front finger can affect measured fill factor and efficiency
 - Conventional metallization: Non-ideal sensing uncritical
 - Advanced metallization: Significant overrating of FF and η for non-ideal sensing
- Approaches for improvement of contacting unit
 - Reduction of distance between voltage and current wires not effective
 - Reduction of distance between current wires promising

Same principle applies for
contacting of rear grid of
busbarless bifacial solar cells

Thank you very much for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Michael Rauer

www.ise.fraunhofer.de

michael.rauer@ise.fraunhofer.de