Advanced Metallization with Low Silver Consumption for Silicon Heterojunction Solar Cells

J. Schube¹, T. Fellmeth¹, M. Jahn¹, R. Keding¹, S. W. Glunz¹,²
¹Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, Phone +49 761/4588-5058, joerg.schube@ise.fraunhofer.de
²Albert-Ludwigs-University Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany

Introduction
- Ag is a main cost driver in photovoltaics production [1]
- Metallization with Ag reduction potential for Silicon Heterojunction (SHJ) solar cells investigated
- Screen-printing of Ag-coated copper paste [2] ⇒ Pot. 30% Ag reduction
- Inkjet-printing of Ag nanoparticle ink [3] ⇒ > 90% Ag reduction
- FlexTrail-printing of Ag nanoparticle ink ⇒ > 90% Ag reduction

Inkjet-Printing of Ag Nanoparticle Ink

Dependence on the printed layer number per finger
- Busbarless SHJ solar cells
- Correction of PCB Touch [4] measurement necessary (see also Ref. [5]):
 - The lower the layer number the higher the \(j_{SC} \)
 - Highest FF with one/two printed layers (see explanation below)

Contacting extreme thin fingers with PCB Touch

<table>
<thead>
<tr>
<th>Printing technique</th>
<th>(V_{OC}) (mV)</th>
<th>(j_{SC}) (mA/cm²)</th>
<th>FF (%)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inkjet-printing (one layer)</td>
<td>733.8</td>
<td>36.7</td>
<td>81.6</td>
<td>23.1</td>
</tr>
<tr>
<td>Screen-printing</td>
<td>796.8</td>
<td>37.9</td>
<td>80.1</td>
<td>22.4</td>
</tr>
</tbody>
</table>

\(V \) data (median values) of busbarless SHJ solar cells with comparable grid layouts.

- \(R_L \) (screen-printing) < \(R_L \) (inkjet-printing)
- \(FF \) (screen-printing) < \(FF \) (inkjet-printing)

⇒ High fingers (e.g. screen-printing): PCB Touch contacts fingers only.
⇒ Thin fingers (e.g. inkjet-printing): PCB Touch contacts fingers and ITO.

Conclusion
- 21.6% median efficiency of bifacial five busbar SHJ solar cells achieved with screen-printed Ag-coated copper paste and silver paste
- 23.3% maximum efficiency of a busbarless bifacial SHJ solar cell utilizing a inkjet-printed front grid achieved
- FlexTrail-printing allows for 23.7% maximum efficiency of a busbarless bifacial SHJ solar cell

FlexTrail-Printing of Ag Nanoparticle Ink

- FlexTrail is established at Fraunhofer ISE as a novel printing technology
- Printing of commercially available Ag nanoparticle ink
- FlexTrail’s arguments:
 - Printing of ultra-fine lines, flexible layouts
 - Large process window, simple handling
 - Higher process stability compared with inkjet-printing (e.g. clogging)

Microscopy images at a magnification of 50 of an inkjet-printed finger (one layer) (left) and a FlexTrail-printed finger (right) on alkaline textured SHJ solar cells.

Screen-Printing of Silver-Coated Copper Paste

- 21.6% median efficiency achieved with pure Ag and Ag-coated copper
- \(V_{OC} \) on similar level for both groups (mean value is 734.4 ± 1.0 mV)
- Finger widths and finger resistances (40 µm screen openings):
 - Paste AgCu: 60 ± 2 µm and 2.1 ± 0.1 Ω/cm
 - Paste Ag: 49 ± 1 µm and 2.8 ± 0.3 Ω/cm

SEM images of an inkjet-printed one-layer-finger’s (left) and a screen-printed finger’s (right) cross-section.

This work was funded by the German Federal Ministry of Economic Affairs and Energy within the research project ”ATAKAMA.” under contract 0324144. Jörg Schube gratefully acknowledges the scholarship support from the Reiner Lemoine-Stiftung. Special thanks are directed to PV Nano Cell, Namics, and Kyoto Flex.