Introduction

Why metal contact recombination is important?

- As the contact area of the metal electrode increases, the surface recombination velocity increases.
- Increased surface recombination velocity limits open-circuit voltage (V_{oc}) in crystalline silicon solar cells.
- The surface recombination velocity can be represented by saturation current density (J_0).

Saturation current density (J_0)

- J_0 is the sum of all J_0 component: $J_0 = J_{0,BSF} + J_{0,metal} + J_{0,emitter}$.
- $J_{0,BSF}$ is the emitter saturation current density values where the emitter is passivated with SiO_x.
- $J_{0,metal}$ is the emitter saturation current density in emitter-metal interface.
- Emitter damage caused by the Ag crystallites during the high-temperature firing step.
- As firing peak temperatures increase, more Ag pastes fires through the passivation layer to contact the emitter.
- $J_{0,emitter}$ is the sum of $J_{0,pass}$ and $J_{0,metal}$.

Calculation method

$$J_0 = J_{0,BSF} + J_{0,metal} + J_{0,emitter}$$

Results & Discussion

Emitter property and saturation current density

- Surface phosphorus concentration
 - Sample A: 8.82×10^{20} atom/cm3
 - Sample B: 6.24×10^{20} atom/cm3
 - Reference: 2.11×10^{20} atom/cm3

Ag crystallite morphology, Ag concentration and contact resistance

- As surface doping concentration decreases, $J_{0,emitter}$ decreases.
- Emitter saturation current concentration decreases because $J_{0,emitter}$ depends on surface doping concentration.
- The increase of $J_{0,pass}$ and $J_{0,metal}$ reduces V_{oc} and increases the surface recombination velocity.

Experimental

V_{oc} calculation and surface recombination velocity

- As the surface doping concentration decreases, the initial V_{oc} decreases because $J_{0,pass}$ is low.
- Increase of metal fraction indicates increase of $J_{0,metal}$.
- As $J_{0,metal}$ increases, the V_{oc} decreases.
- Surface doping concentration decreases, the surface recombination velocity decreases.
- When the metal electrode is present, the recombination velocity increases.

Conclusion & Future work

- Prediction of metal penetration depth between metal-silicon interface.
- Analysis of morphology between metal electrode and silicon interface.
- Front electrode optimization considering $J_{0,metal}$.

- Using QSSPC measurements, $J_{0,emitter}$ values were analyzed according to the metal fraction.
- The firing temperature and surface concentration affect metal Si interface and $J_{0,metal}$ values.
- The difference in Ag crystallite formation was revealed in various firing temperatures.
- The optimization of $J_{0,emitter}$ is significant to improve the efficiency of the c-Si solar cells.