PROJECT AMELIZ: PATTERNING TECHNIQUES FOR COPPER ELECTROPLATED METALLIZATION ON HETEROJUNCTION CELLS

Agata Lachowicz¹, Gaëlle Andreatta¹, Nicolas Blondiaux¹, Antonin Faes¹, Nicolas Badel¹, Juan J. Diaz Leon¹, Christophe Allébé¹, Charly Fontaine², Paul-Henri Haumesser², Johann Jourdan³, Delfina Muñoz³, Maxime Godard⁴, Maxime Darmon⁴, Sylvain Nicolay¹, Matthieu Despeîse¹, Christophe Ballif¹

¹ CSEM PV-center, Neuchâtel, Switzerland, ² CEA Leti, Grenoble, France, ³ Université Grenoble Alpes, CEA LITEN, INES Le-Bourget-du-Lac, France, ⁴ CNRS, University of Sherbrooke, Institut Interdisciplinaire d’Innovation Technologique, Canada

9th Metallization and Interconnection Workshop October 2020
There might be not enough silver… for all the solar cells needed in the future

- PV production is supposed to grow to terawatt levels to enable energy transition to 100% renewables. Leading scientists postulate ~2 TW p.a. already for 2030.¹,²

- For today's annual production of around 100 GW more than 2000 metric tons of silver are consumed. * 10% of the annual silver supply have been consumed for the PV sector in 2019 (2800 tons).³

- Silver price has increased by >50% in the last months.

- Paste consumption for bifacial heterojunction cells with busbars for interconnection with soldered ribbons is particularly high, 300 mg/cell.

* Assumed 100 mg silver and 5 W per cell and 100 GW annual production

¹ N. Haegel et al., Science, 2019
² P. Verlinden, HJT Workshop, 2019
³ World Silver Survey 2020, silverinstitute.org
CSEM baseline process for heterojunction cells

- Precursor with TCO
- PVD seed layer stack
- Hotmelt inkjet mask
- Copper plating
- Mask removal
- Seed layer etchback

- Line resistivity: $2 \, \mu\Omega \cdot \text{cm}$
- Contact resistivity: $< 1 \, \text{m}\Omega \cdot \text{cm}^2$
- Adhesion: peel force 4 – 5 N/mm (180° peel test on soldered ribbons)
- Efficiency: $> 24.7\%$ on an industrial precursor, monofacial, 4BB

- Excellent module stability:
 1-cell GG modules, 4BB with soldered ribbons: tested until > 500 TC (-2.3%) and > 3000 h DH (-2.8%)
- SmartWire Interconnection: stability exceeds 3x the IEC 61215 norm
 - Busbar-less cells with pure copper seed layer

<table>
<thead>
<tr>
<th>Width [µm]</th>
<th>Height [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.170</td>
<td>24.882</td>
</tr>
</tbody>
</table>
TCOs are excellent barriers against copper diffusion. ¹,²

Pure copper seed layer sputtered directly on HJT cell precursors with ITO
Annealing at 190°C, 1h
Seed layer etching and PL measurement
No impact on PL intensity

Test repeated on precursors with IWO
Annealing with sputtered copper 1h at 190°C
No impact on PL intensity

¹ C. Liu et al., "ITO as Diffusion Barrier Between Si and Cu", ECS, 2005
Process cost

- Cost advantage to screen printing:
 - HJT cells for interconnection with soldered ribbons: high paste consumption, increasing silver paste price
- Baseline plating process
 - High capex: PVD, inkjet printer, plating line
 - Organic mask: high material cost
- Development focused on the replacement for the PVD seed layer and on alternative masking materials. Project Ameliz: Advanced MEtaLIZation Strategies for Heterojunction Solar Cells

Calculated with **300 mg paste laydown** for a bifacial HJT cell for ribbon interconnection. For silver paste price 800 and 1000 US$/kg.
Electrografted copper seed layer on ITO

- An electrolyte containing copper ions and a benzo-diazonium compound with good complexing properties for copper is used. Copper ions and the benzodiazonium salt are electrochemically reduced. The challenge is to deposit copper without passivating the surface by the organic compound.

- 300 nm thick, well adherent, copper-rich layers have been obtained on small patterned samples with polished surface.

- Next step: application on bigger cell precursors with textured surface, measurement of contact resistivity.

ITO reduction

- The topmost ITO layer is reduced by hydrogen plasma to promote adhesion of the subsequently electrodeposited metal layer.

- ITO reduction has been realized by inductively coupled plasma, confirmed by XPS and by lowered sheet resistance. A smooth indium layer was observed, without spheres as may happen on electrochemically reduced ITO. First tests with nickel layers plated on the reduced ITO indicate good adhesion.

- Optimization of the plasma parameters is ongoing to fully eliminate the remaining minor impact on cell passivation.

![Graph showing In-O and In peaks with different plasma conditions.]

<table>
<thead>
<tr>
<th>Cell precursor</th>
<th>Rsheet [Ω/sq]</th>
</tr>
</thead>
<tbody>
<tr>
<td>As received</td>
<td>339</td>
</tr>
<tr>
<td>500W ICP-H2</td>
<td>156</td>
</tr>
<tr>
<td>700W ICP-H2</td>
<td>81</td>
</tr>
</tbody>
</table>
Self assembled monolayer as plating mask ¹

- Commercially available perfluorinated phosphonic acids and octadecyl phosphonic acid (C18-PA) were applied at first on polished silicon wafers with ITO. Highly hydrophobic layers are formed, the thickness ranging between 0.9 to 2.6 nm (measured by XRR). Accordingly the material amount consumed per one wafer side is very small and below 1 mg. Material consumption reduced by a factor of roughly 1000x compared to an organic mask.

- Resistance to highly acidic electrolytes has been tested by dynamic contact angle measurement and two molecules have been selected for application on textured precursors.

- Application on textured M2 wafers by spraying.

[¹] G. Andreatta et al., Thin Solid Films, 2019
Plating test with SAM mask

- SAM coated samples have been patterned with oxygen plasma using a hard mask. 62 µm lines were obtained after plating of a thin nickel layer, residual ghost plating is observed.
- With improved patterning 20 µm lines have been realized.
- Next step: plating test in acidic copper electrolyte on patterned M2 precursors.
Printed seed grid and a thin dielectric layer as plating mask

- Short process sequence
- With silicon oxide layers deposited by PECVD minor ghost plating has been observed in standard acidic copper electrolytes.
- First cells fabricated with standard screen-printed grid with silver paste and an ALD-AIOx layer 8nm. Parasitic plating on fingerprints. Lower Jsc after plating.
 Goal: plating on very fine lines, the required conductivity will be provided by electrodeposited copper

Printed seed grid and a thin dielectric layer as plating mask: copper paste

- Two types of copper paste tested on textured precursors.
- Specific resistivity of low temperature silver paste, copper paste and electrodeposited copper on copper paste:

<table>
<thead>
<tr>
<th>Line</th>
<th>Cross section [µm²]</th>
<th>Resistance [Ω]</th>
<th>Specific resistivity [µΩ·cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag paste (curing at 200°C)</td>
<td>2925</td>
<td>0.12</td>
<td>4.0</td>
</tr>
<tr>
<td>Cu paste (curing at 200°C)</td>
<td>1880</td>
<td>1.24</td>
<td>27.4</td>
</tr>
<tr>
<td>Cu plated on Cu paste</td>
<td>5480</td>
<td>0.04</td>
<td>2.8</td>
</tr>
<tr>
<td>Cu plated, paste area subtracted</td>
<td>3600</td>
<td>0.04</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Measured on 200 µm lines, line length 1.1 mm, printed on glass.

- No impact on PL signal after 1 h annealing of printed copper paste at 200°C
 Tested on precursors with ITO and IWO
- Contact resistivity 3.5 mΩ·cm²
Growing need for replacement of silver because of increasing PV production volumes and increasing silver price.

Reliable plating process with PVD seed layer and hotmelt inkjet patterning available, cost reduction and reduction of material consumption to continue.

Electrografting of a copper seed layer and ITO reduction for improved adhesion demonstrated.

Application of SAMs by spraying on industrial size textured wafers and patterning for 20-micron lines demonstrated.

First cells with printed seed grid and a dielectric layer fabricated. The possibility to use copper paste as seed-grid makes the process even more cost competitive to standard silver screen-printing.

Heterojunction cells are resistant against copper ingress.
Acknowledgment
We thank the French National Research Agency ANR and the Swiss National Science Foundation for funding the Ameliz project under grant agreement number 200021L_182101 and for the funding from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 745601.

Thank you very much for your attention!

Q&A

Contact: agata.lachowicz@csem.ch
Supporting information: electromigration

- Electromigration has been observed on integrated circuits, on aluminum and on copper.

- The values for current density per track cross section, at which electromigration can occur are:
 \(~0.5\ \text{MA/cm}^2\) for aluminum and
 \(~1\ \text{MA/cm}^2\) for copper\(^1,2\)

- Current density per finger cross section on a solar cell:
 \(~15\ \text{kA/cm}^2\)
 This is two orders of magnitude lower than on ICs and therefore electromigration is not expected to happen on solar cells.

\(^1\) https://en.wikipedia.org/wiki/Electromigration
\(^2\) J. Lienig, M. Thiele, ISPD, 2018

* Calculation for:
4 BBs, 10 A per cell, 80 fingers
Finger dimensions: 10 µm x 10 µm