Silver grid finger corrosion on snail track affected PV modules - Investigation on degradation products and mechanisms

I. Duerr, J. Bierbaum, J. Metzger, J. Richter, D. Philipp, H. Wirth
Fraunhofer Institute for Solar Energy Systems ISE

6th Metallization Workshop 2016
Konstanz, 02.05.2016

www.ise.fraunhofer.de
Introduction

- Snail tracks
 - Silver grid finger corrosion
 - Diffusion of reactants → Cell crack or cell edges
 - Surface related, visible effect
- Not directly correlated to power loss
- Snail track degradation products = silver salts

Introduction

- **Snail tracks**
 - Silver grid finger corrosion
 - Diffusion of reactants \rightarrow Cell crack or cell edges
 - Surface related, visible effect
 - Not directly correlated to power loss
 - Snail track degradation products = silver salts
Introduction

- **Snail tracks**
 - Silver grid finger corrosion
 - Diffusion of reactants → Cell crack or cell edges
 - Surface related, visible effect
- Not directly correlated to power loss
- Snail track degradation products = silver salts

Cross section scheme of PV module

- Glass
- EVA
- Cell
- Back sheet
- Water vapor (H_2O), oxygen (O_2), carbon dioxide (CO_2)
Introduction

- **Snail tracks**
 - Silver grid finger corrosion
 - Diffusion of reactants → Cell crack or cell edges
 - Surface related, visible effect
- Not directly correlated to power loss
- Snail track degradation products = silver salts
Motivation

- Results from years of snail track study showed the existence of
 - different visual appearance of snail tracks
 - different behavior to artificial stress of snail track

More than one snail track product?!
Experimental Set-up

- Analytics for product determination
 - Raman spectroscopy
 - Verification with EDX spectroscopy
 - Further stress tests for mechanism determination

- Snail track affected c-Si PV modules from field
- Preparation of cell part and corresp. EVA material out of the affected modules
Snail Track Products detected by Raman spectroscopy

- Silver acetate: Ag_2Ac_2
- Silver sulfide: Ag_2S
- Silver carbonate: Ag_2CO_3
- Silver phosphate: Ag_3PO_4

Note: Silver sulfide is only found under artificial stress.
1st Snail Track Product

\[\text{Ag}_3\text{PO}_4 \]
Silver Phosphate Ag_3PO_4

- Possible other reactants:
 - oxidative reagents
 - potential
 - temperature

$$\text{Ag} + \text{R-PO}_4^{3-} \rightarrow \text{O}_2, \text{H}_2\text{O}, \square \text{Ag}_3\text{PO}_4$$

Phosphor content in encapsulants (phosphite additives)

<table>
<thead>
<tr>
<th>Company A</th>
<th>Company B</th>
<th>Company C</th>
</tr>
</thead>
<tbody>
<tr>
<td>rel. signal intensity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raman spectroscopy on affected grid

Bands of Ag_3PO_4
2nd Snail Track Product

[Diagram showing a pie chart with Ag$_2$CO$_3$ highlighted in blue]
Silver Carbonate Ag_2CO_3

Norrish reaction I \textbf{and/or} CO$_2$ diffusion from back sheet?

\[
\begin{align*}
R_1-\text{CH}_2-\text{CH}_2&-\text{CO}_2\text{H} \rightarrow R_1-\text{CH}_2-\text{CH}_2-\text{CO}_2\text{H} + \text{CO}_2 + \text{H}_2\text{O} \\
\text{R}_1-\text{CH}_2-\text{CH}_2-\text{CO}_2\text{H} + \text{CO}_2 + \text{H}_2\text{O} &\rightarrow (\text{AgOH})\text{Ag}_2\text{CO}_3
\end{align*}
\]

SEM/EDX measurement on affected grid

Raman spectroscopy on affected grid

3rd Snail Track Product

Ag$_2$Ac$_2$
Silver Acetate $\text{Ag}_2(\text{CH}_3\text{COO})_2$

Photochemical degradation of EVA

\[
\text{Ag} + \text{CH}_3\text{COOH} \xrightarrow{\text{Norrish reaction II}} \text{UV, O}_2 \quad \text{Ag}_2(\text{CH}_3\text{COO})_2
\]

Further accelerated UV test

Raman spectroscopy on affected grid
Silver Acetate $\text{Ag}_2(\text{CH}_3\text{COO})_2$

Photochemical degradation of EVA

$$\text{R}_1\text{C}_n\text{H}_{2n+1}\text{C}_n\text{H}_{2n+1}\text{R}_2 \xrightarrow{\text{Norrish reaction II}} \text{R}_1\text{C}_n\text{H}_{2n+1}\text{=C}\text{R}_2 + \text{CH}_3\text{COOH}$$

$$\text{Ag} + \text{CH}_3\text{COOH} \xrightarrow{\text{UV, } \text{O}_2} \text{Ag}_2(\text{CH}_3\text{COO})_2$$

Detailed image after accelerated UV test

Raman spectroscopy on affected grid
4th Snail Track Product

\[\text{Ag}_2\text{S} \]
Silver Sulfide Ag_2S

Module with high (left) and low (left) oxygen transmission after damp heat test (85 °C, 85 % RH)

$\text{Ag} + \text{R-S}^2\text{-} \xrightarrow{\Delta T, \text{H}_2\text{O}, \text{O}_2} \text{Ag}_2\text{S}$

Sulfur content in back sheets (organic sulferous additives)

Raman spectroscopy on affected grid

Summary

silver acetate
- Quality of EVA
- Gas permeability
- UV irradiation

silver carbonate
- Composition of cell metallization
- Gas permeability
- UV irradiation

silver sulfide
- Additives of back sheet
- Gas permeability
- Humid, high temperatures (85 °C, 85 % RH)

silver phosphate
- Additives of encapsulant
- Gas permeability
- Other reactants
Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Ines Dürr
Head of Team Failure Detection and Analytics
Ines.Duerr@ise.fraunhofer.de

www.ise.fraunhofer.de