FLEXO-PRINTED BUSBARLESS SOLAR CELLS FOR MULTI-WIRE INTERCONNECTION

A. Lorenza, C. Gredy, A. Senne, S. Beyer, Y. Yao, P. Papet, J. Ufheil, H. Reinecke, F. Clement

aFraunhofer ISE, Freiburg
bContiTech Elastomer-Besch. GmbH, Northeim
cSomont GmbH, Umkirch
dMeyer Burger AG, Thun
eIMTEK, Albert-Ludwigs-Universität, Freiburg

6th Metallization Workshop
Constance, May 2nd 2016

www.ise.fraunhofer.de
Outline

1. Motivation
2. Approach – Flexographic printing technology
3. Experimental Setup
4. Results of flexo printed busbarless solar cells and mini-module
5. Summary & Outlook
Motivation

Alternative Technologies for Solar Cell Metallization

- **Aim:**
 Rotational printing methods for solar cell metallization

- **Advantages:**
 - High throughput (factor 2-3 compared to screen printing)
 - Very low silver consumption
 - Low costs for consumables
 - Highly developed printing process with commercially available consumables

Fine line front side metallization of silicon solar cells using Flexographic printing
Joint Project „Rock-Star“

- Joint project „Rock-Star“
- 11 industry partners
- Time scale: 01.09.2015 – 31.08.2018
- Supported by the German Federal Ministry of Education and Research (BMBF) (Photonics Research Germany)
- Aim of project:
 - Evaluation of rotational printing methods
 - Development of a platform with rotational printing units

Project Consortium:

Associated partners:
Approach

Flexographic Printing Technology

- Flexography – letterpress printing principle
- Widely used in graphic arts industry
- High-speed roll-to-roll machines
- Introduced in 2011 by ISE and TU Darmstadt [1]
- Feasibility on Solar Cells confirmed in several studies [2-4]

Approach

Flexographic Printing Technology

- Wafer fixed on vacuum table
- Low-viscous ink
- Direct printing on wafer
- Printing speed $V_p = 300$ mm/s on lab machine
- Expected throughput on an industrial machine: $3000 - 5000$ Wafers/h
Approach

Flexographic Printing Technology

Anilox Roller:

- Line screening
 100 – 700 wells/cm

- Dip Volume D_v
 1.0 – 17.0 cm³/m²

- Large wells:
 More ink transferred

- Small wells:
 Less ink transferred

Anilox Roller

Printing Plate

Si-Wafer

$I = 100 \text{ l/cm}, V_D = 16.5 \text{ cm}^3/\text{m}^2$

$\text{200 \(\mu \text{m} \)}$
Approach
Flexographic Printing Technology

Anilox Roller:
- Line screening
 100 – 700 wells/cm
- Dip Volume D_v
 1.0 – 17.0 cm³/m²
- Large wells:
 More ink transferred
- Small wells:
 Less ink transferred
Approach

Flexographic Printing Technology

Anilox Roller:
- Line screening
 100 – 700 wells/cm
- Dip Volume D_v
 1.0 – 17.0 cm³/m²
- Large wells:
 More ink transferred
- Small wells:
 Less ink transferred

$I = 700$ l/cm, $V_D = 1.0$ cm³/m²

200 µm
Approach
Flexographic Printing Technology

Printing plate:
- Flexible plate
- Printing areas elevated
- UV exposed or laser-engraved plates
- Mounted on cylinder with compressible foam tape
- Width of finger ridge down to $w_n = 5 \, \mu m$
Approach

Flexographic Printing Technology

Printing plate:
- Flexible plate
- Printing areas elevated
- UV exposed or laser-engraved plates
- Mounted on cylinder with compressible foam tape
- Width of finger ridge down to $w_n = 5 \mu m$
Approach

Smart Wire Connection Technology

Smart Wire Connection Technology (SWCT) [5]:

- Interconnection of busbarless solar cells by 15 to 38 Wires
- Wires embedded in polymer foil (foil-wire-electrode)

Advantages:

- Reduced ohmic power losses
- Low silver consumption
- Less shading losses
- Less impact of cell breakage

Multi-wire interconnection with Meyer Burger’s Smart Wire Connection Technology (Source: Meyer Burger AG)

Experimental Setup

Fabrication of busbarless solar cells

Experimental setup:

- Pre-test to investigate impact of printing pressure
- Fabrication of busbarless solar cells with flexo-printed front side

| Cz-Si Precursor ($R_{sh} \approx 85-90 \ \Omega$/sq) |
| Screen printed Al rear side |
| Flexo printing on front side |
| Ink A | Ink B |
| Firing variation |
| I-V-measurement (Pasan GridTOUCH) |
| Confocal laser microscopy (fingers) |
| Measurement of finger resistance R_L |
| TLM-measurement (contact resistance ρ_c) |
| Fabrication of mini-module (SWCT) |
| I-V-measurement module |
| EL-measurement of module |

I-V-measurement using Pasan GridTOUCH-system
Experimental Setup
Fabrication of Mini-Module

Experimental setup:

- Fabrication of mini module with the best 2 solar cells
- SWCT wire interconnection with 18 wires
- Encapsulated with TPO and glass

Fabricated mini-module of two flexo-printed busbarless solar cells with SWCT interconnection
(Source: MeyerBurger/Fraunhofer ISE)
Experimental Results

Impact of printing pressure

- Pre-test to investigate the impact of printing pressure p_{loc} on finger width w_f
- *Fujifilm Prescale* sensor films
- Linear relationship: $\Delta p_{\text{loc}} = 0.05 \text{ Mpa} \rightarrow \Delta w_f \approx 10 \text{ µm}$
- Printing pressure strongly affects the finger width
- Absolute precise adjustment is required

Correlation between local pressure p_{loc} and finger width w_f
Experimental Results
Results of Ag-inks

- Aim of further research:
 Control and reduce ink spreading
 → less shading
 → increase conductivity of fingers

- Ink A showed a considerable lower contact resistance

<table>
<thead>
<tr>
<th>Ink</th>
<th>Viscosity η [mPas]</th>
<th>ϕ Finger width w_f [µm]</th>
<th>ϕ Finger Resistance R_L [Ω/cm]</th>
<th>ϕ Spec. Contact resistance ρ_c [mΩcm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>358*</td>
<td>55 ($\sigma = 7$)</td>
<td>$19.5 \pm 4.0^{**}$</td>
<td>$3.0 \pm 0.6^{**}$</td>
</tr>
<tr>
<td>B</td>
<td>113*</td>
<td>66 ($\sigma = 6$)</td>
<td>$18.3 \pm 1.9^{**}$</td>
<td>$19.0 \pm 5.2^{**}$</td>
</tr>
</tbody>
</table>

*measured at a shear rate of 1000s$^{-1}$
**95% confidence interval

SEM image of flexo-printed contact finger

SEM image of flexo-printed contact finger
Experimental Results

I-V-results of busbarless solar cells

- Only **4.7 mg wet ink** applied on front side
- Best group (ink A @ $T_{FFO} = 880^\circ$C): $\eta_\varnothing = 19.0\%$ (best cell $\eta_{\text{max}} = 19.4\%$)
- Ink B achieved considerably lower results due to the high ρ_c $\eta_\varnothing = 16.5\%$
- Measurement characteristics of Grid$^{\text{TOUCH}}$:
 - j_{sc} without shading of wires
 - FF measured with 30 wires

Conversion efficiency η of the best solar cell groups with both inks
Experimental Results
I-V-results of SWCT mini-module

- Successful interconnection via SWCT
- Aperture module efficiency (black mask): $\eta_{\phi} = 15.8\%$
- Causes for cell-to-module losses:
 - FF losses due to finger R_L (30-38 wires optimal)
 - Additional shading of wires
 - EL revealed further causes for FF-losses

EL image with identified defects:
A) defective wire-interconnection to contact fingers along the edges of the solar cells
B) Areas with high R_s on solar cells
C) Locally failed interconnections between contact fingers and wires
Flexographic Printing for Multi-Busbar Solar Cells
Summary + Outlook

Experimental results:
- First busbarless solar cells with flexo-printed front side metallization demonstrated
- Very low ink consumption of 4.7 mg per cell
- Solar cells obtained promising results ($\eta_{\text{max}} = 19.4 \%$)
- Successful fabrication of mini-module with SWCT interconnection

Challenges and further research:
- Only one printing step on the front side
- Reduce lateral finger resistance (Target: $R_L < 10 \ \Omega/cm$)
- Optimize amount of wires for SWCT
- Rotary screen printing for the rear side
Thank you for your attention!

... and all Co-workers at PVTEC
... as well as our industry partners who supported this work

This work was partly supported by the German Federal Ministry of Education and Research (BMBF) within the funding program Photonics Research Germany under the contract number 13N13512 (Rock-Star).

Andreas.Lorenz@ise.fraunhofer.de