METALLIZATION OF SILICON CARBIDE- AND SILICON OXIDE-BASED LAYER STACKS AS PASSIVATING CONTACTS FOR SILICON SOLAR CELLS

Andrea Ingenito¹, G. Nogay¹, P. Wyss¹, J. Stuckelberger¹, I. Mack¹, Q. Jeangros¹, C. Allebé², J. Horzel², M. Despeisse², P. Löper¹, F.-J. Haug¹, C. Ballif¹,²

¹ EPFL PVLAB, Rue de la Maladière 71b, 2002 Neuchâtel, Switzerland
² CSEM SA, PV-Center, Jaquet-Droz 1, 2002 Neuchâtel, Switzerland
Metallization schemes for temperature-stable passivating contacts

- Temperature-stable passivating contacts:
 - High surface passivation and charge carrier transport [1,2]
 - In principle compatible with industrial processes at high temperature

- Metallization schemes for passivating contacts:
 - High temperature process
 - Screen print and firing-through [3], [4]
 - Industrially compatible
 - Ag-frit etches through the poly-Si degrading passivation (, thickness poly-Si, Ag-paste optimization, …)
 - Low temperature process
 - PVD of Metals or TCO/metal stack [1,2,5-9]
 - Potential for industrialization for low-cost metals and In-free TCOs [6]
 - Sputtering damage not always fully recovered (soft-deposition techniques required e.g. LPCVD, evaporation, PECVD[6],…)

References:
[10]
Strategies for passivating contacts at PV-LAB

Rear side upgrade
Integration of passivating contact with treatment compatible with front side POCl₃

Both side contacted[^1-3] c-Si solar cells with passivating contacts

TCO still needed for:
- Improving rear optic
- Improving lateral transport in case of bifacial cells (depending on the R_{SH} of the in-diffused region)

TCO still needed for:
- Improving front and rear optics
- Improving lateral conductivity (high R_{SH} of the thin front passivating contact)

[^1]: F. Feldman et al., IEEE, Portland, (2016)
Both side contacted$^{[1,2]}$ c-Si solar cells with passivating contacts

Rear side upgrade
Integration of passivating contact with treatment compatible with front side POCl$_3$

Full area rear side passivating contact:
$\text{SiC}_x(p)$, μ-c-SiO$_x$(p)

TCO still needed for:
- Improving front and rear optics
- Improving lateral conductivity (high R_{SH} of the thin front passivating contact)
SiC_x(p) passivating hole contacts

- Advantages of alloying a-Si:H with C:
 - Less prone to blistering
 - Better stability in standard wet chemistry
- a-Si(i) buffer layer displaces Boron and Carbon from the chem-SiO_x layer

G. Nogay et al., SOLMAT 2017, doi: 10.1016/j.solmat.2017.06.039
SiC$_x$(p) passivating hole contacts

- i-V$_{OC}$ degrades for excessive annealing or doping

G. Nogay et al., SOLMAT 2017, doi: 10.1016/j.solmat.2017.06.039
SiC\(_x\)(p) passivating hole contacts

- i-V\(_{OC}\) degrades for excessive annealing or doping
- \(\rho\) decreases with annealing and doping
- Possibly explained with decomposition of chem-SiO\(_x\)
- Two optimum conditions:
 - 800°C, high 1.5 sccm
 \(iV_{OC}=717\text{mV}, \rho_c=16\text{mΩ cm}^2\)
 - 850°C, 0.5 sccm
 \(iV_{OC}=716\text{mV}, \rho_c=27\text{mΩ cm}^2\)

G. Nogay et al., SOLMAT 2017, doi: 10.1016/j.solmat.2017.06.039
Hybrid Cells with diffused rear side

- The effect of annealing T for two different TMB flows

![Graphs showing V_{oc}, J_{sc}, and FF vs. annealing temperature for two TMB flows (1.5 sccm and 1.9 sccm).]

- V_{oc} follows the iV_{oc} trend
 - V_{oc} up to 709 mV
 - $iV_{oc} - V_{oc} \geq 10$ mV (sputtering damage)

- Lower doping \rightarrow higher J_{sc}
 - Less free carrier absorption

- Higher annealing T \rightarrow higher FF

- Higher doping \rightarrow higher FF
 - FF up to 81%

G. Nogay et al., SOLMAT 2017, doi: 10.1016/j.solmat.2017.06.039
Full-area passivating hole rear contacts

- **SiC\textsubscript{x}-based layer stack**
 - 800°C
 - 850°C

- Tendency in literature: Thicker and denser SiO\textsubscript{x} beneficial for higher annealing temperature [1,2]

- **POCl\textsubscript{3} integration**
 - Attain higher thermal budgets with chem-SiO\textsubscript{x} grown in HNO\textsubscript{3} and PECVD?
 - µc-Si by PECVD, and introduce O in order to «support» the chem-SiO\textsubscript{x} (µc-SiO\textsubscript{x})

µc-SiO$_x$(p) hole passivating contacts

Annealed at 900°C

Voc (mV)	707.7
Jsc (mA/cm²)	39.43
FF (%)	79.87
Eff (%)	22.29

FF: efficient carrier transport for the µc-SiOx(p) possibly still limited by the front i/n

J$_SC$: Limited by the front contact

V$_OC$: > 10 mV lower than i-V$_OC$

η : > 22%

P. Wyss et al., manuscript in preparation

andrea.ingenito@epfl.ch
Strategies for passivating contacts at PV-LAB

Rear side upgrade
Integrate contact formation with standard thermal processes
- Emitter diffusion

Both side contacted c-Si solar cells with passivating contacts

Full-area front side passivating contact
$\mu c-SiO_x(n)$
$SiC_x(n)$

Co-annealed

Full area rear side passivating contact:
$SiC_x(p), \mu c-SiO_x(p)$

Full area rear side passivating contact:
$SiC_x(p), \mu c-SiO_x(p)$
µc-SiO$_x$(n) for front side passivating contacts

- Parasitic absorption of Si layers on the front side can cause large J_{SC} losses [1]

- Replace part of the Si layer by SiO$_x$

- Vertically oriented Si filaments within the SiO$_x$ matrix to ensure current transport

- Already present in the as-deposited state but also visible after annealing (850°C)

Patent pending (PCT filed in April 2017)

\(\mu c\text{-SiO}_x(n) \) for front side passivating contacts

\[\rho_c \text{ strongly decreasing with increasing doping} \]

\(\rho_c \) for \(\mu c\text{-SiO}_x(n) \) metallized with evaporated Al lower than ITO/Ag sputtered

ITO sputtering damage for $\text{uc-SiO}_x(n)$

- Lowly doped samples
 => strong sputtering damage (curing does not help)
- Highly doped samples
 => Lower sputtering damage

- Surface passivation less sensitive to Auger recombination rather than induced sputtering damage

J. Stuckelberger et al., manuscript under review

andrea.ingenito@epfl.ch
Surface passivation of $\text{SiC}_x(n)$ for front textured side (PCD measurements)

- 800 °C; 8 min:
 - Auger-limited at low CH$_4$/SiH$_4$
 - Massive improvement after hydrogenation towards higher CH$_4$ flow

- SiH$_4$ flow constant
 - 735 mV
 - 7 fA/cm2

Normalized CH$_4$/SiH$_4$ [-]
Surface passivation of $\text{SiC}_x(n)$ for front textured side (PCD measurements)

- **800 °C; 8 min:**
 - Auger-limited at low CH$_4$/SiH$_4$
 - Massive improvement after hydrogenation towards higher CH$_4$ flow

- **850 °C; 8 min:**
 - Auger-limited at low CH$_4$/SiH$_4$
 - Massive improvement after hydrogenation towards higher CH$_4$ flow
Surface passivation of $\text{SiC}_x(n)$ for front textured side (PCD measurements)

- **800 °C; 8 min:**
 - Auger-limited at low CH_4/SiH_4
 - Massive improvement after hydrogenation towards higher CH_4 flow

- **850 °C; 8 min:**
 - Auger-limited at low CH_4/SiH_4
 - Massive improvement after hydrogenation towards higher CH_4 flow

- **900 °C; 8 min:**
 - No variations with CH_4 and hydrogenation
 - Break-up of the oxide and/or high Auger recombination

A. Ingenito et al., manuscript in preparation

- $\text{SiC}_x(n)$
- $\sim 13\text{ nm}$
- c-Si FZ (p-type)
Co-annealed SiC\textsubscript{x}-based solar cells

- \textbf{V}\textsubscript{oc}:
 - same trend as i-V\textsubscript{oc}
 - \(iV\textsubscript{oc}-V\textsubscript{oc} > 20\) mV

- \textbf{FF}:
 - decreases with increasing of the temperature (p-FF?)

- \textbf{J}\textsubscript{sc}:
 - peaks at 850 °C (poor transparency at 800 °C; high recombination at 900 °C)

- \textbf{\(\eta\)}:
 - highest at 800 °C

<table>
<thead>
<tr>
<th>V\textsubscript{oc} [mV]</th>
<th>FF [%]</th>
<th>J\textsubscript{sc} [mA/cm2]</th>
<th>(\eta) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>708</td>
<td>80.2</td>
<td>37.8</td>
<td>21.5</td>
</tr>
</tbody>
</table>

V\textsubscript{oc}:
- [Image 726x460]

- VOC:
 - same trend as i-V\textsubscript{oc}
 - \(iV\textsubscript{oc}-V\textsubscript{oc} > 20\) mV

- FF:
 - decreases with increasing of the temperature (p-FF?)

- J\textsubscript{sc}:
 - peaks at 850 °C (poor transparency at 800 °C; high recombination at 900 °C)

- \(\eta\):
 - highest at 800 °C

Sputtered ITO/ screen printed Ag paste front side

Sputtered ITO/Ag rear side

SiC\textsubscript{x}(n) High CH\textsubscript{4}

SiC\textsubscript{x}(p)

c-Si(p)
Impact of the metallization process on V_{OC} and FF

- $i-V_{OC}$ and i-FF almost untouched after ITO (no sputtering damage)
- Degradation at low injection after metallization ($p-\eta=22.2\%$)
- Dark diode losses >7 mV on $p-V_{OC}$ and $>1\%$ on the p-FF ($p-\eta=21.8\%$)

- $i-V_{OC}$ and i-FF untouched after ITO (no sputtering damage)
- Degradation at low injection after metallization ($p-\eta=21.9\%$)
- Dark diode losses >6 mV on V_{OC} and $>2\%$ on the p-FF ($p-\eta=21.1\%$)
Both side SiC\textsubscript{x}-based solar cells (planar)

Best Cell: J-V Curve

- \(V_{oc} = 727.3\ \text{mV}\)
- \(J_{sc} = 33.5\ \text{mA.cm}^{-2}\)
- \(\text{FF} = 84.0\ %\)
- \(\eta = 20.5\ %\)

Measured with ARF

- \(V_{oc} = 729.6\ \text{mV}\)
- \(J_{sc} = 36.8\ \text{mA.cm}^{-2}\)
- \(\text{FF} = 83.5\ %\)
- \(\eta = 22.4\ %\)

<table>
<thead>
<tr>
<th>(iV_{oc}) before ITO [mV]</th>
<th>Total (J_0) [fA/cm(^2)]</th>
<th>(pV_{oc}) [mV]</th>
<th>(pFF) [%]</th>
<th>(p\eta) [%]</th>
<th>(R_s) [(\Omega\cdot\text{cm}^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>744</td>
<td>8.35</td>
<td>731</td>
<td>86.5</td>
<td>21.2</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- 17 mV difference in \(iV_{oc}\) and \(V_{oc}\) after metalization due to sputtering damage
- ITO/low-T Ag-paste metallization is not FF-limiting!

Microtextured anti-reflective foil (ARF) Ulbrich, et al. Prog. Photovoltaics 2013, 21, 1672–1681
Summary

- Annealed rear side passivating contacts:
 - SiC_x(p), \(iV_{OC} > 715 \text{ mV}, \rho_c < 20 \text{ m}\Omega \text{cm}^2 \)
 - μc-SiO_x(p), \(iV_{OC} > 720 \text{ mV}, J_0 < 15 \text{ fA/cm}^2 \)

- Proof-of-principle cells with front side heterojunction:
 - Annealed SiC_x(p), \(\eta = 21.9\% \)
 - Annealed SiO_x(p), \(\eta = 22.3\% \)

- Annealed front side passivating contacts for better transparency
 - SiO_x(n) \(\rightarrow \) \(iV_{OC} > 720 \text{ mV} \)
 - SiC_x(n) \(\rightarrow \) \(iV_{OC} > 735 \text{ mV} \) (on textured)

- Co-annealed solar cells
 - SiO_x(n)/SiO_x(p), good \(J_{SC} \) and FF (planar)
 - SiC_x(n)/SiC_x(p), \(\eta = 21.5\% \), \(J_{SC} \) to be improved, good FF and \(V_{OC} \) (textured)
 - SiC_x(n)/SiC_x(p), reasonable \(J_{SC} \) excellent FF·\(V_{OC} \) (84.0·726) with low-T Ag paste
THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGEMENT

The authors gratefully acknowledge support by the Swiss National Science Foundation (SNF) under grant No. 200021_14588/1 and No. IZLIZ2_156641, by the Swiss Federal Office for Energy (SFOE) under grant No. SI/501253-01 and by the European Union’s Horizon 2020 research and innovation programme under Grant Agreements no. 727529 (project DISC)

We would like to thank all co-workers at PV-Lab & CSEM.
EQE co-annealed cells with front $\text{SiC}_x(n)$

- Blue response increases towards higher annealing temperature (higher crystallinity)

- At 900 °C, the high recombination rate and FCA limit the EQE in the IR region
Cell results: Co-diffused SiOx-based solar cells

- $V_{OC} = 686.1$ mV
- $J_{SC} = 34.8$ mA cm$^{-2}$
- FF = 79.6 %
- η = 19.0 %

FF: efficient carrier transport through SiOx layer
J_{SC}: promising high for **planar** cell
V_{OC}: improvable, compared to iV_{OC}
η: proof of concept for SiOx(n)/Si(n) passivating contact

J. Stuckelberger et al., manuscript under review
March 18-22, on the Swiss EPFL campus in Lausanne in the amazing ROLEX Learning Center

Conference chaired by EPFL (IMT/PV-lab)
nPV-Workshop chaired by CSEM
Optical losses

- Alloying with C helps to widen the bandgap
- Increasing C-content shifts crystallization towards higher temperature
- Layers annealed at 900 °C are more transparent than a-Si(n)

To decrease J_A below 1 mA/cm², thickness of 5 nm
Testing of different TCOs on SiCₓ(p)

- **ITO**
 - Minority Carrier Lifetime (seconds)
 - Minority Carrier Density (cm⁻³)

- **ZTO**
 - Minority Carrier Lifetime (seconds)
 - Minority Carrier Density (cm⁻³)

- **IZO**
 - Minority Carrier Lifetime (seconds)
 - Minority Carrier Density (cm⁻³)

Sputtering damage not fully recovered

<table>
<thead>
<tr>
<th>Conductivity [1/Ωcm]</th>
<th>ITO</th>
<th>ZTO</th>
<th>IZO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4x10³</td>
<td>2.5x10²</td>
<td>2.6x10³</td>
<td></td>
</tr>
</tbody>
</table>

| Mobility [cm²V⁻¹s⁻¹] | 30 | 17 | 50 |

Contact Resistivity (mΩ·cm²)

ITO IO:H ZTO IZO
Process flow of co-annealed front and rear contacted SiC\textsubscript{x}-based c-Si solar cells (patterning free)

Single side texturing

«Chem-SiO\textsubscript{x}» grown in HNO\textsubscript{3}

PECVD SiC\textsubscript{x}(n) front

PECVD SiC\textsubscript{x}(p) rear

Co-Annealing

Hydrogenation

Metallization*

*Sputtered ITO/Ag rear side

*Sputtered ITO/ screen printed Ag paste front side

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Current [fA/cm2]</th>
<th>Voltage [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 °C; 8 min</td>
<td>5-7</td>
<td>727</td>
</tr>
<tr>
<td>850 °C; 8 min</td>
<td>10-12</td>
<td>723</td>
</tr>
<tr>
<td>900 °C; 8 min</td>
<td>20</td>
<td>670</td>
</tr>
</tbody>
</table>

Optimized by G.Nogay
Surface passivation of SiC$_x$(n) on planar and textured surfaces (PCD measurements)

All samples after hydrogenation with a SiNx as donor layer

- **800 °C; 8 min:** Small losses when moving from planar to textured (5-10 mV)
- **850 °C; 8 min:** Moderate losses when moving from planar to textured (>10 mV)
- **900 °C; 8 min:** Strong losses when moving from planar to textured (>50 mV)