Interface studies on laser structured plated solar cells

Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, Phone +49 761/4588-5019, andreas.buechler@ise.fraunhofer.de

MOTIVATION
- High requirement for plated contacts on high efficient solar cells
- Electrical and mechanical properties are determined on the contact interface
- Goal: Improvement of laser structured plated contacts by improved understanding of the interface

TOPCon CELL WITH PLATED CONTACTS: 22.9 %
- 10x10cm² TOPCon cells with lasersstructured plated contacts
- 5 μm laser contact opening width, 3 busbar, 1.3mm finger pitch

DIRECT PLATING ON LASER STRUCTURED SILICON
- Process sequence at Fraunhofer ISE for laser-structured plated contacts

CONTACT RECOMBINATION
- Influence of laser damage depends on doping profile
- To minimize loss
 - Laser parameters
 - Selective emitter
 - Annealing of LCO
- Plated TOPCon solar cell:
 - J0, laser : 2700 fA/cm²
 - Total J0 : 59 fA/cm²
 - To lower damage: Adjust emitter profile to penetration depth

AVOIDING PARASITIC PLATING
- Parasitic plating (PP) for ARC defects
- Harms aesthetic, pFF, Voc and Jsc
- PP can be suppressed by
 - Avoiding ARC defects
 - Electrical Insulation of ARC defects
 - Skipping HF (“Easy Plating”)
- Easy Plating: allows good contact resistance without HF-dip
 - Limited time between ablation and deposition
 - Post-Plating anneal required
 - No effect of silicidation

ENSURING CONTACT ADHESION
- Two established ways to ensure adhesion
 - Mechanical solution: Topography
 - Chemical solution: Silicidation
- Silicidation
 - Necessary: Removal of all interface oxides
 - Risk of nickel spiking (pFF-loss)
- Topography
 - Ps-fs-pulsed laser ablation on textured surface
 - Rougening of contact opening (first 50-200nm → emitter!)

CONCLUSION
- Low contact resistivity on lowly doped emitters without silicide formation
- Emitter profile and penetration depth of laser need to be adjusted
- To avoid parasitic plating: no ARC defects or skipping HF-dip
- For contact adhesion: Ensure nano-roughness or silicides

This work was funded by the German Federal Ministry for the Economic Affairs and Energy in the framework of the “Groschen” project (0324012) and “PEPPER” (03225877D)