Measurement and Validation of Contact Resistance on Nickel-Copper Plated Contacts for c-Si Solar Cells
Joseph Karas1, Lynne Michaelson2, Krystal Munoz2, Tom Tyson2, and Stuart Bowden1

1Arizona State University, Tempe, Arizona, USA
2Technic, Inc., Cranston, Rhode Island, USA

joseph.f.karas@asu.edu

Introduction & Motivation

The commonly-used transmission line method (TLM) is a popular technique for characterizing contact resistivity (ρ_c) of c-Si solar cell contacts, and can be performed directly on the fingers of the front grid on finished cells diced into strips. Metal contacts can increasingly be the limiting component of solar cells and new materials and methods of forming contacts are being proposed; therefore it is important that this method of TLM is well-developed and accurate.

Impact of Line Resistance on ρ_c

Conventional TLM theory neglects any resistance contribution of the probed fingers, giving the effective contact resistivity as:

$$\rho_c \text{-effective} = R_{LW}$$

The voltage drop $V(x)$ some distance x along a finger with line resistance R_w where current I has been injected:

$$V(x) = \int_0^x \frac{l_0}{2} - \frac{2\pi x^2}{W} R_w \, dx = \frac{l_0}{2} \frac{x^2}{2W} R_w = W \int_0^1 \frac{l_0}{2} - \frac{2\pi x^2}{2W} 2R_w \, dx = \frac{W R_w}{2\pi^2}$$

The corrected effective resistivity is:

$$\rho_c \text{-effective, corrected} = \frac{V(x) - 2V_W}{I_0} = \frac{W}{2\pi^2}$$

For large strip widths W and/or high finger line resistance R_w the line resistance contribution is not negligible. The impact of line resistance is immediately visible for the sample at right, for a sample with $R_w = 370$ mOhm.

Applying the correction method of Guo et al. appears to mitigate this issue, but perhaps overcorrects for wide strips.

Impact of Linewidth on ρ_c Measurement

Same-magnification images of (a) unplated patterned SiN$_x$, (b) 1 um Ni-plated finger, (c) 10 um Ni-Cu plated finger, illustrating different area bases for calculating ρ_c.

Emitter and NiSi$_x$ Effects

ρ_c for Ni/Cu contacts on n-type emitters with differing drive-in oxidation. Lower ρ_c is achieved on shallower emitters with shorter drive-in times.

Comparison of Industrial Ni-Cu Plated to Ag Printed Contacts

Sintered Ni-Cu plated samples from two different Ni plating chemistries exhibit lower ρ_c than analogous Ag printed samples.

Acknowledgements

This material is based upon work supported by the the Office of Energy Efficiency and Renewable Energy of the Department of Energy under SoMat2 DOE DE-EE0006814 and the U.S DOE and U.S. National Science Foundation and the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement ECC-1041885. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation or Department of Energy. Special thanks to Sushen Dahal, Anthony Aragon, Marlen Gonzalez, and Nicole Nowakowski for assistance with TLM measurements.