Non-firing-through Ag paste contact formation on selectively laser doped n^+ layers for PERC cell enhancement

J. Engelhardt1, Ryan Mayberry2, Markus König3, Kora Bayer1, Susanne Fritz1, Florian Mutter1, Matthias Heilig1, Giso Hahn1 and Barbara Terheiden1

1University of Konstanz, 2Hereaus Precious Metals North America, 3Hereaus Deutschland

23.10.2017; 7th Workshop on Metallization & Interconnection for Crystalline Silicon Solar Cells
Idea and approach

Selective emitter

n+ n++ n++ p

Laser doping by internal doping source combined with non-firing-through paste
Idea and approach

Selective emitter

Screen-printing

\[\text{n}^+ \quad \text{n}^{++} \quad \text{p} \]

\[\text{n}^+ \quad \text{n}^{++} \quad \text{p} \]
Idea and approach

Selective emitter

Screen-printing

Laser treatment

PSG
Idea and approach

Selective emitter

Screen-printing

Laser treatment

Low impact

p n^{++} n^+

n^+ n^{++} p

PSG

CB

VB
Idea and approach

Selective emitter

Screen-printing

Laser treatment

Low impact

Laser doping by internal doping source combined with non-firing-through paste
Idea and approach

Selective emitter

Screen-printing

Laser treatment

Low impact

Laser doping by internal doping source combined with non-firing-through paste

Inactive P atoms

No SiN_x etch
Idea and approach

New concept

Standard sel. Emitter

Laser doping by internal doping source combined with non-firing-through paste

Inactive P atoms

No SiNₓ etch
Idea and approach

New concept

Laser doping by internal doping source combined with non-firing-through paste

Inactive P atoms

Standard sel. Emitter

No SiN$_x$ etch
532 nm Laser activation

60 Ω/sq P-doped emitter

Variation of laser power
- Fixed defocus height
- Change in R_{Sheet} measured by 4PP and ECV

Results
- Decrease in R_{Sheet} for low laser power
- Increase in R_{Sheet} for further power increase
532 nm Laser activation

60 Ω/sq P-doped emitter

Variation of laser power
• Fixed defocus height
• Change in R_{Sheet} measured by 4PP and ECV

Results
• Decrease in R_{Sheet} for low laser power
• Increase in R_{Sheet} for further power increase

Internal doping source
➢ Overall doping concentration increases → inactive P atoms are activated
➢ Profile deepens with higher laser power
➢ Ablation occurs for even higher laser power → overall dopant conc. decreases
➢ Less power required compared to laser doping from external source
➢ No electrically active defects affecting doping measurement
532 nm Laser activation

60 Ω/sq P-doped emitter

Variation of laser power
• Fixed defocus height
• Change in R_{Sheet} measured by 4PP and ECV

Results
• Decrease in R_{Sheet} for low laser power
• Increase in R_{Sheet} for further power increase

Internal doping source
- Overall doping concentration increases \rightarrow inactive P atoms are activated
- Profile deepens with higher laser power
- Ablation occurs for even higher laser power \rightarrow overall dopant conc. decreases
- Less power required compared to laser doping from external source
- No electrically active defects affecting doping measurement
Fluence vs. doping profile

Fluence is laser power / area

Variation of laser fluence
Fluence vs. doping profile

Fluence is laser power / area

Variation of laser fluence
• Low fluence sufficient to activate P atoms
Fluence vs. doping profile

Fluence is laser power / area

Variation of laser fluence

• Low fluence sufficient to activate P atoms
Laser impact

Re-passivated PERC precursors

PERC precursor
- Front side lasered
- Re-passivated using Al$_2$O$_3$
Laser impact

Re-passivated PERC precursors

PERC precursor
- Front side lasered
- Re-passivated using Al_2O_3
Laser impact

Re-passivated PERC precursors

PERC precursor
- Front side lasered
- Re-passivated using Al\(_2\)O\(_3\)

Results

- Impact for certain laser parameters within reference \(iV_{OC}\) window
- Low \(iV_{OC}\) values for laser treatment near laser focus

Laser damage can be minimized
Surface impact for contact formation

Textured PERC precursor: SEM investigation

SEM imaging
- Left: Inlens detector
- Right: SE detector

A B C D E
F G H J Ref
Surface impact for contact formation

Textured PERC precursor: SEM investigation

SEM imaging
- Left: Inlens detector
- Right: SE detector

Laser interaction for more focused laser treatment visible as molten/fused pyramid remnants
Non-firing-through paste

75 Ω/sq P doped emitter

SiN$_x$:H coated sample
- Large contact crystals through pinholes in SiN$_x$:H
- Higher density of Ag in contact area
Non-firing-through paste

75 Ω/sq P doped emitter

SiN$_x$:H coated sample

- Large contact crystals through pinholes in SiN$_x$:H
- Higher density of Ag in contact area

Uncoated sample

- High density of small crystals
- No significant Ag density difference in/out of contact area
Non-firing-through paste

75 Ω/sq P doped emitter

SiN$_x$:H coated sample

- Large contact crystals through pinholes in SiN$_x$:H
- Higher density of Ag in contact area

Uncoated sample

- High density of small crystals
- No significant Ag density difference in/out of contact area

Paste contact behavior

➢ Paste composition can be adjusted to contact small, open areas better
TLM – Spec. contact resistivity

PERC precursor

Ag pastes
- A – exp. non-firing-through
- B – exp. non-firing-through
- Ref – comm. firing-through

Samples
- SiNx – SiN$_x$:H coated
- LP – laser activated
- pure – uncoated

Contact comparison
- Paste A does not contact through SiN$_x$:H or on open areas
TLM – Spec. contact resistivity

PERC precursor
Ag pastes
- A – exp. non-firing-through
- B – exp. non-firing-through
- Ref – comm. firing-through

Samples
- SiNx – SiNₓ:H coated
- LP – laser activated
- pure – uncoated

Contact comparison
- Paste A does not contact through SiNₓ:H or on open areas, but on laser activated ($R_{\text{Sheet}} \downarrow$), opened areas R_C is sufficiently low
TLM – Spec. contact resistivity

PERC precursor

Ag pastes
- A – exp. non-firing-through
- B – exp. non-firing-through
- Ref – comm. firing-through

Samples
- SiNx – SiNₓ:H coated
- LP – laser activated
- pure – uncoated

Contact comparison
- Paste A does not contact through SiNₓ:H or on open areas, but on laser activated ($R_{\text{Sheet}} \downarrow$), opened areas R_C is sufficiently low
- Paste B and Ref show no such selectivity
TLM – Spec. contact resistivity

PERC precursor

Ag pastes
- A – exp. non-firing-through
- B – exp. non-firing-through
- Ref – comm. firing-through

Samples
- SiNx – SiN$_x$:H coated
- LP – laser activated
- pure – uncoated

Contact comparison
- Paste A does not contact through SiN$_x$:H or on open areas, but on laser activated ($R_{\text{Sheet}} \downarrow$), opened areas R_C is sufficiently low
- Paste B and Ref show no such selectivity
- Paste A advantageous for selective contacting in opened AND doped areas
 - Gain in V_{OC} expected
Sneak peek

Proof of concept: PERC solar cells with presented concept
First attempt without optimized laser parameters!

Three groups

• Reference group (R) with homogeneous emitter (~ 120 Ω/sq)
• Selective emitter group (SEL) with laser doping from PSG layer (~ 60/120 Ω/sq)
• New concept group (NCG) with activated P atoms (~ 80/120 Ω/sq)
Sneak peek

Proof of concept: PERC solar cells with presented concept
First attempt without optimized laser parameters!

Three groups

- Reference group (R) with homogeneous emitter ($\sim 120 \, \Omega/\text{sq}$)
- Selective emitter group (SEL) with laser doping from PSG layer ($\sim 60/120 \, \Omega/\text{sq}$)
- New concept group (NCG) with activated P atoms ($\sim 80/120 \, \Omega/\text{sq}$)

Results

- V_{OC} values
 - No loss in V_{OC} for NCG (665 mV) compared to R (665 mV), but loss for SEL (660 mV) compared to NCG and R
- J_{SC} values for all groups $\sim 39 \, \text{mA/cm}^2$
Sneak peek

Proof of concept: PERC solar cells with presented concept
First attempt without optimized laser parameters!

Three groups
• Reference group (R) with homogeneous emitter (~ 120 Ω/sq)
• Selective emitter group (SEL) with laser doping from PSG layer (~ 60/120 Ω/sq)
• New concept group (NCG) with activated P atoms (~ 80/120 Ω/sq)

Results
• V_{OC} values
 • No loss in V_{OC} for NCG (665 mV) compared to R (665 mV),
 but loss for SEL (660 mV) compared to NCG and R
• J_{SC} values for all groups ~ 39 mA/cm²
• FF gain of NCG of 2%$_{abs}$ compared to R,
 but still less than SEL by ~ 1-2%$_{abs}$
• NCG:
 • η_{max} of 19.3%
Summary

- Activation of P from internal source combined with ablation
- Non-firing-through Ag paste for lower paste impact
- Selective contact behavior
- Proof-of-concept PERC cells with 19.3% efficiency
The authors would like to thank SolarWorld Innovations GmbH for providing precursors and support with fruitful discussions. Part of this work was financially supported by the German Federal Ministry for Economic Affairs and Energy (FKZ 0324001 IMPULS and 0325777B HELENE). The content is the responsibility of the authors.
355 nm Laser activation

75 Ω/sq P doped emitter

Variation of laser power
- Fixed defocus height
- Change in R_{Sheet} measured by 4PP and ECV

Results
- Increase in R_{Sheet} even for low laser power
- Decrease of profile for higher laser power
355 nm Laser activation

75 Ω/sq P doped emitter

Variation of laser power
- Fixed defocus height
- Change in R_{Sheet} measured by 4PP and ECV

Results
- Increase in R_{Sheet} even for low laser power
- Decrease of profile for higher laser power

Internal doping source
- Overall doping concentration decreases → inactive P atoms are not activated
- Ablation occurs even for low laser power → overall dopant conc. decreases
- Not suitable due to lower ablation threshold and low absorption depth, as well as cold ablation process instead of heat induction to activate P atoms