Towards a High-Throughput Metallization of Silicon Solar Cells using Rotary Screen Printing

A. Lorenza, A. Münzer, M. Lehner, R. Greutmann, H. Brocker, H. Reinecke, F. Clement

aFraunhofer ISE, Freiburg
bLehner Engineering, Engelburg (CH)
cGallus Ferd. Rüesch AG, St. Gallen (CH)
dIMTEK, Albert-Ludwigs-Universität, Freiburg

7th Metallization Workshop
Constance, Oct 23th -24th 2017

www.ise.fraunhofer.de
Motivation
Alternative Technologies for Solar Cell Metallization

- Today: Over 95% of industrial Si solar cells are metallized with flatbed screen printing (FSP)
- Double printing sequence (flooding – printing) limits throughput
- Actual throughput FSP: ~ 2400 W/h[^2]

Motivation
Alternative Technologies for Solar Cell Metallization

- Strong need for higher throughputs
- ITRPV: Expected throughput for metallization processes in 2027: up to 10000 Wafers/h[2]

Motivation
Alternative Technologies for Solar Cell Metallization

- Strong need for higher throughputs
- ITRPV: Expected throughput for metallization processes in 2027: up to 10000 Wafers/h\(^2\)
- Approach: High-speed rotary printing processes
- Target throughput: Up to 8000 Wafers/h on a single line

\(^2\) ITRPV Roadmap, 2017

Flexible printing plate with fine line front side grid layout
Joint Project „Rock-Star“

- Joint project „Rock-Star“
- 7 project partners
- Time scale: 01.09.2015 – 31.08.2018
- Supported by the German Federal Ministry of Education and Research (BMBF) (Photonics Research Germany)

Aim of project:

- Evaluation of rotary printing methods
- Development of a platform with rotational printing units

Project Consortium:

Associated partners:

Gefördert von

aufgrund eines Beschlusses des Deutschen Bundestages
Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection

- Busbarless solar cell
- Cu wires with special coating

H-pattern solar cells with soldered ribbons

- Silicon solar cell with H-pattern grid
- Ribbons soldered on busbars
Motivation

Roadmap

- **Busbarless solar cells with multi-wire interconnection**
 - Busbarless solar cell
 - Cu wires with special coating

- **H-pattern solar cells with soldered ribbons**
 - Silicon solar cell with H-pattern grid
 - Ribbons soldered on busbars

- **Rear Side AI**
 - Rot. Screen Printing

- **Front Fingers**
 - Flexo Printing

- **Busbarless Cell**
Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection

- Busbarless solar cell
- Cu wires with special coating

H-pattern solar cells with soldered ribbons

- Silicon solar cell with H-pattern grid
- Ribbons soldered on busbars

Rear Side Al
- Rot. Screen Printing

Front Fingers
- Flexo Printing

Busbarless Cell

Proof of Principle successful\(^3\)

Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection
- Cu wires with special coating

H-pattern solar cells with soldered ribbons
- Silicon solar cell with H-pattern grid
- Ribbons soldered on busbars

Rear Side Al
- Rot. Screen Printing

Front Busbars
- Rot. Screen Printing

Front Fingers
- Flexo Printing

H-Pattern Cell
Motivation

Roadmap

- **Busbarless solar cells with multi-wire interconnection**
 - Busbarless solar cell
 - Cu wires with special coating

- **H-pattern solar cells with soldered ribbons**
 - Silicon solar cell with H-pattern grid
 - Ribbons soldered on busbars

Process Steps

1. **Rear Side Al**
 - Rot. Screen Printing
2. **Front Busbars**
 - Rot. Screen Printing
3. **Front Fingers**
 - Dispensing
4. **H-Pattern Cell**
Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection

- Busbarless solar cell
- Cu wires with special coating

H-pattern solar cells with soldered ribbons

- Silicon solar cell with H-pattern grid
- Ribbons soldered on busbars

Rear Side Al
- Rot. Screen Printing

Front Busbars
- Rot. Screen Printing

Front Fingers
- Dispensing

H-Pattern Cell

Proof of Principle successful[4]

Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection

H-pattern solar cells with soldered ribbons

- Busbarless solar cell
- Cu wires with special coating

- Silicon solar cell with H-pattern grid
- Ribbons soldered on busbars

Rear Side Al
Rot. Screen Printing

Front Busbars
Rot. Screen Printing

Front Fingers
Dispensing

H-Pattern Cell

Approach

Rotary Screen Printing Technology (RSP)

- Widely used in textile and label printing on roll-to-roll machines
- Printing speed up to 165 m/min.\(^5\)
- Potential application for Solar Cells envisioned in 2000\(^6\)

Approach
Rotary Screen Printing Technology (RSP)

- Widely used in textile and label printing on roll-to-roll machines
- Printing speed up to 165 m/min.\[^5\]
- Potential application for Solar Cells envisioned in 2000\[^6\]

\[^5\] Datasheet Gallus ECS 340 (260)
Approach
Rotary Screen Printing Technology (RSP)

- Widely used in textile and label printing on roll-to-roll machines
- Printing speed up to 165 m/min.\[^5\]
- Potential application for Solar Cells envisioned in 2000\[^6\]

\[^5\] Datasheet Gallus ECS 340 (260)
Approach
Rotary Screen Printing Technology (RSP)

- Difference to flatbed screen printing:
 - Continuous printing process
 - Much faster printing sequence
 - Thicker wires of screen mesh
 - Slightly lower viscosity of paste

SEM-Image of a fine line opening within a flatbed screen and a cylinder screen
Rear side metallization of Al BSF solar cells

Experimental Setup

- Feasibility study on Al BSFa solar cells
- p-type Cz-Si Wafers (156 mm x 156 mm2)
- Laser cutting to size 125 mm x 125 mm
- RSP: 3 Rotary screens (different meshes), slightly diluted Al paste
- FSP reference group with standard screen
- Front side: Flatbed screen printing (85 fingers, nom. Finger width $w_n = 50$ µm)

Aluminium Back Surface Field
Experimental Results
Comparison of rear side metallization

- Rotary screen printing (Gr. 1 – 3):
 - $d_{Al,FFO} = 20 – 40 \, \mu m$ (depending on screen mesh)
- Flatbed screen printing (Gr. 4):
 - $d_{Al,FFO} = 24 \, \mu m$

SEM cross-section images of the rear side metallization
Experimental Results
Comparison of rear side metallization

- Typical pinholes in rear side Al visible on all cells
- No quality differences between RSP and FSP rear side Al layers

SEM image of FSP rear side metallization with pinholes
Experimental Results

Impact of initial Al thickness on the Al-Si-eutectic

- Depth of eutectic layer depends on the mass/initial thickness of the rear side Al layer\[^7\]
 \[
 t_{\text{eut}} = \frac{m_{\text{Al}}}{A \cdot \rho_{\text{Si}}} \cdot \frac{S_{\text{Si, melt}}(T_{\text{eut}})}{1 - S_{\text{Si, melt}}(T_{\text{eut}})}
 \]

- Depth of the Al-doped p+ Si region depends on initial mass of Al and effective peak set temperature\[^7\]
 \[
 t_{\text{Al-p}^+} = \frac{m_{\text{Al}}}{A \cdot \rho_{\text{Si}}} \left[\frac{S_{\text{Si, melt}}(T_{\text{peak}})}{1 - S_{\text{Si, melt}}(T_{\text{peak}})} - \frac{S_{\text{Si, melt}}(T_{\text{eut}})}{1 - S_{\text{Si, melt}}(T_{\text{eut}})} \right]
 \]

SEM cross-section images of the Al BSF. A considerable impact of the initial Al thickness d_{Al} on the depth of the Al BSF is visible

Experimental Results
Impact of initial Al thickness on the Al-Si-eutectic

- Results confirm a linear dependency between d_{Al} and t_{eut} which is consistent with the model of Rauer[7]

- Depth of eutectic layer t_{eut} on the same level for group 2 (RSP) and group 4 (FSP)

Experimental Results
Impact on V_{oc} and $R_{SH,\text{rear}}$

- Differences in V_{oc} caused by different effectivity of the rear side Al BSF
- Thickness d_{Al} of groups 2 and 3 sufficient
- Strong bowing phenomena for cells of group 3
- FF loss due to the rear side sheet resistance $R_{SH,\text{rear}}$ acceptable for all groups

<table>
<thead>
<tr>
<th>Exp. Group</th>
<th>$R_{SH,\text{rear}}$ [mΩ/sq.]</th>
<th>$\Delta\text{FF}_{\text{rear}}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (RSP)</td>
<td>19.7 ± 0.5</td>
<td>0.016</td>
</tr>
<tr>
<td>Group 2 (RSP)</td>
<td>12.4 ± 0.2</td>
<td>0.010</td>
</tr>
<tr>
<td>Group 3 (RSP)</td>
<td>4.3 ± 0.1</td>
<td>0.004</td>
</tr>
<tr>
<td>Group 4 (FSP)</td>
<td>14.0 ± 0.3</td>
<td>0.011</td>
</tr>
</tbody>
</table>

*Normalized to a layer thickness of 25 µm
Experimental Results
I-V-Results of solar cells

- Groups 2 and 3 achieved comparable conversion efficiency to reference FSP group 4:
 - Group 2 (RSP): $\eta_0 = 19.4\%$
 - Group 3 (RSP): $\eta_0 = 19.3\%$
 - Group 4 (FSP): $\eta_0 = 19.3\%$

Conversion efficiency η of the four experimental groups
Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection

| Busbarless solar cell | Cu wires with special coating |

H-pattern solar cells with soldered ribbons

| Silicon solar cell with H-pattern grid | Ribbons soldered on busbars |

Rear Side Al

Rot. Screen Printing

Front Busbars

Rot. Screen Printing

Front Fingers

Dispensing

H-Pattern Cell
Experimental Results

Front side metallization using rotary screen printing

- Successful proof of principle for busbar printing
- Slightly diluted Ag paste
- Lines down to $w = 100 \, \mu m$ can be printed with good quality
- Further development: Adaption of paste for fine line finger printing

CLSM-Image of a standard busbar with a nominal width of $w_B = 1,0 \, mm$ printed with rotary screen printing
Motivation

Roadmap

Busbarless solar cells with multi-wire interconnection

- Busbarless solar cell
- Cu wires with special coating

H-pattern solar cells with soldered ribbons

- Silicon solar cell with H-pattern grid
- Ribbons soldered on busbars

Proof of Principle successful

- Rear Side Al
- Front Busbars

Rotary Screen Printing for Silicon Solar Cells
Summary + Outlook

Experimental results:

- Successful proof of principle:
 - RSP rear side metallization
 - RSP busbar printing
- I-V-results on the same level as FSP reference solar cells

Challenges and further research:

- Optimization of paste rheology
- Possible application for front side metallization
- Combination with flexographic printing and parallel dispensing
- Proof of concept with respect to an industrial application
Rotary Screen Printing for Silicon Solar Cells
The „Rock-Star“ Demonstrator – Coming in 2018

Image from flexo printing test at TU Darmstadt IDD
Rotary Screen Printing for Silicon Solar Cells

Relevant Publications

- **Article in PV International 37 (2017):**
 „Towards a high-throughput metallization for silicon solar cells using rotary-printing methods“

- **Poster and Paper on 7th SiliconPV (2017):**

- **Oral Presentation and Paper on 33rd EUPVSEC (2017):**
Thank you for your attention!

… and all Co-workers at PVTEC
… as well as our industry partners who supported this work

This work was partly supported by the German Federal Ministry of Education and Research (BMBF) within the funding program Photonics Research Germany under the contract number 13N13512 (Rock-Star).

Andreas.Lorenz@ise.fraunhofer.de