PERC MEETS PARALLEL DISPENSING

Tuning the Front Side of Silicon Solar Cells by Contact-less Printing

M. Pospischil, S. Tepner, M. Kuchler, M. Klawitter, I. Lacmago, L. Ney, M. Breitenbücher, F. Clement

7th Metallization Workshop
Constance, Oct 23rd 2017

www.ise.fraunhofer.de
PV Front Side Metallization
Looking for Innovative Production Tools

Screen Printing
- Screen fabrication
- Paste fabrication

Contact shape
- Electrical contact
- η - gain
- Less Ag-laydown

Dispensing
- Device engineering
- Paste fabrication

© Fraunhofer ISE, 2017
Dispensing at Fraunhofer ISE
Development of Multi Nozzle Print Heads

Single Nozzle Dispenser

- **10 Nozzle Print Heads**

2010 2011 2012 2013 2014 2015 2016

MWT-PERC:

\[\eta = 20.6\% \]

ASYS Dispense Platform

6” Print Head

J. Specht et al., 25th EU-PVSEC, 2010
M. Pospischil et al., Energy Procedia 98, 61 (2016).
Goal: Integration in PV Metallization Lines
Dispenser as Drop-In-Replacement

- Screen printing with integrated dispenser
- Dual-print (floating busbar)
- No drying in between consequent print steps!
- High printing speed $v = 800 \text{ mm/s}$

From Q1/18 in PV-TEC again!

High-end screen printing line for solar cell metallization (Asys Group)

6” Print Head
PARALLEL DISPENSING - OUTLINE

- Background & Motivation
- Continuous Operation
 - IV - Results on PERC
 - Paste consumption
 - Contact geometries
- Intermittent Operation
 - Challenges
 - Current Process: Semi Contact
 - Outlook: On the Fly
- Summary & Outlook

Schematic of the dispensing process using a full wafer size parallel printhead.
Latest PERC-Sampling in PV-Tec
Design of Experiment

- 156 x 156 mm² Cz p-type Si
- Preprocessed until printed Al-backsurfaces
- Screen printed references
 - Screen opening $w_s = 40\,\mu m$
- Dispensed groups
 - Nozzle diameter $D = 35\,\mu m$
- Number of contact fingers
 - $N_f = 100$ (all groups)
- Ag-Paste variation
 - Two commercially available samples of different manufacturers
Latest PERC-Sampling in PV-Tec

FF and V_{oc}

- Fill factor FF and open circuit voltage V_{oc} on similar level at all groups
Latest PERC-Sampling in PV-Tec

J_{sc} gain

- Significant gain
 \[\Delta J_{sc} / J_{sc} \approx 1\% \]
- Substantially reduced shading

![Graph showing J_{sc} (mA/cm²) vs. Screen Printed vs. Dispensed with different paste thicknesses: 27 – 30 μm, 33 – 35 μm, 45 – 48 μm.](image)
Latest PERC-Sampling in PV-Tec

R_s and GridRes Analysis

- More homogeneous contact shape → more efficient material usage (Ag)
- Stable processing @ $w_f = 27\mu m$

$m_{Ag} = 110mg$

- = 100mg
- = 90mg
Latest PERC-Sampling in PV-Tec

Gain in Efficiency

- Less shading
 \[\Delta j_{sc}/j_{sc} \sim 1\% \]

- FF and \(V_{oc} \) on similar level

- \(\Delta m_{Ag}/m_{Ag} = -19\% \)
 at similar \(R_s \)

\[\Delta \eta/\eta \sim 1\% \]
\[\eta_{max} = 21.4\% \]
Optimized for low Ag-consumption:
Same efficiency as screen printed reference (here: $\eta_{\text{max}} = 21.2\%$) @ $m_{\text{Ag}} = 48mg$ (incl. BB)!

$Pa_2 = 12.10 \mu m$

$Pa_1 = 24.56 \mu m$
Improving Contact Geometries
Gridmaster: Where is the optimum for 5BB PERC?

Goal

- Ideal contact shape for specific paste

Future improvements

- Enable further efficiency increase of $\Delta \eta \sim 0.2\%$
- Reduction of wet paste consumption to $m_f < 30\text{mg}$

**M. Pospischil et al., Energy Procedia 55, 693 (2014).
PARALLEL DISPENSING - OUTLINE

- Background & Motivation
- Continuous Operation
 - IV - Results on PERC
 - Paste consumption
 - Contact geometries
- Intermittent Operation
 - Challenges
 - Current Process: Semi Contact
 - Outlook: On the Fly
- Summary & Outlook

Schematic of the dispensing process using a full wafer size parallel printhead.
Challenges of Intermittent Dispensing
Acting Forces at Nozzle Exit

Crucial Parameters
- Yield stress τ_y
- Surface tension σ

Continuous Operation
- Inertia driven flow

Intermittent Operation
- Paste velocity drops dynamically
 \rightarrow Surface effects dominate @ small nozzle diameters D

Mathematical Formulas:

\[Re_y = \frac{\rho \cdot \bar{u}^2}{\tau_y} \]
\[Ca_y = \frac{\tau_y \cdot D}{2\sigma} \]
\[We = \frac{\rho \cdot \bar{u}^2 \cdot D}{2\sigma} \]
Intermittent Dispensing
First Approach: Semi-contact

- Line-start: Fluid-meniscus is brought into contact with substrate
- Line dispensing: As usual, but with velocity and acceleration profile
- Line-End: Triggered break-off, by controlled movement (y and/or z)

→ Prevents wetting issues at line start
→ Requires perfectly parallel aligned nozzles (dispense gap!)
Intermittent Dispensing
Current Status

Semi-contact
- First process established on 10 x parallel print head
- Precisely fabricated nozzle plates ensure homogeneous dispense gap
- High process stability (no wetting!)

→ First cell batches planned for end 2017

Current focus of R&D
- Advanced valve technologies
- Closed loop process control
- Scale up (6" print head)
PERC meets Parallel Dispensing
Summary & Outlook

Continuous Operation
- High process speeds \(v = 800 \text{ mm/s} \) possible
- Results on PERC: \(\eta_{\text{max}} = 21.3\% \) and 21.4% vs. 21.1% (reference) reached with two commercial screen printing pastes of different suppliers
- Record contact width \(w_f = 25\mu m \) with only \(m_{Ag} = 48mg \) wet paste lay-down, \(\eta = 21.2\% \)

Intermittent Operation
- First process established (semi-contact) on lab tool
- Outlook: First cell processing and scale up
Thank you for your attention! We will be back 😊